USE OF NOVEL ebbret BIOSENSORS FOR COMPREHENSIVE SIGNALING PROFILING OF ONE HUNDRED THERAPEUTICALLY RELEVANT HUMAN GPCRs

C. Avet *1, A. Mancini *2, B. Breton 1, C. Le Gouill 1, A. S. Hauser 3, C. Normand 2, H. Kobayashi 1, F. Gross 2, V. Lukasheva 1, M. Hogue 1, S. Morissette², E. B. Fauman⁴, J. P. Fortin⁴, S. Schann², X. Leroy², D. E. Gloriam³, M. Bouvier¹ ¹ Institute for Research in Immunology and Cancer, Université de Montréal, ² Domain Therapeutics, ³ Department of Drug Design and Pharmacology, University of Copenhagen, ⁴ Pfizer Global R&D, * Authors contributed equally to the work

Introduction

Functional selectivity is the ability of a given GPCR to engage multiple signaling pathways, with distinct ligands of the given receptor displaying different efficacies in engaging receptor-coupled pathways. Exploitation of functional selectivity in drug development will require an exhaustive description of the effectors that can be engaged by a given receptor, thus revealing receptor- and ligand-specific signaling signatures. Here, we describe a novel suite of enhanced bystander bioluminescence resonance energy transfer (ebBRET)-based biosensors that were used to define the signaling profiles of 100 therapeutically relevant human GPCRs in response to endogenous (or prototypical) ligands.

Material and Methods

GPCR signaling profiling was performed with 15 pathway-selective ebBRET biosensors monitoring the activation of specific Gα proteins and βarrestins 1 and 2. The G protein biosensors represent a new generation of BRET-based sensors that measure the translocation of G protein effectors to the plasma membrane with no need for modifying the G proteins (except for $G\alpha s$) or the receptors.

Fig. 1. ebBRET-based effector membrane translocation assay for G protein and **Barrestin activation** assay principle and workflow.

(a) Upon receptor activation, Rluclltagged effector proteins (Effector-R) translocate towards and interact with active $G\alpha$ subunits from each G protein family, thus increasing ebBRET with membrane-

anchored rGFP (G). (b) Upon receptor activation, Rlucll-tagged βarrestins (βarrestin-R) translocate to the plasma membrane, leading to increased ebBRET. (c) Effector membrane translocation assay workflow. The same workflow is used for all assays.

coupled to each G protein family. (b) Number of receptors that activate each $G\alpha$ subunit. (c) Number of receptors that couple to members of 1, 2, 3 or 4 G protein families.

specific biosensors. Cells were treated with endothelin 1 and the response recorded 10 mins later.

independent (constitutive) activity of an orphan GPCR. (b) Biased signaling of naturally occurring E/DRY motif missense variants of hGPR17.

therapeutic exploitation of GPCRs